If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+42x+44=0
a = 10; b = 42; c = +44;
Δ = b2-4ac
Δ = 422-4·10·44
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2}{2*10}=\frac{-44}{20} =-2+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2}{2*10}=\frac{-40}{20} =-2 $
| 23=y+336/26 | | 9(q-877)=909 | | c-c+4c+1=5 | | 3z-2z+3z-2z=20 | | 11q-9q+2=20 | | 6w-4w+w=18 | | 4t+6t-2=8 | | 4u+4-7=3u-1+u | | 22+32y/6=-4 | | 2/x-4=2/3-1/2x | | 0.5x-2.1=3.8x+1.9 | | 3x-71*2=4/3 | | 8+5x(10-8)=18 | | 0.3=18/x | | 0.7x-2.1=2.4x+2.9 | | 2L+w=87 | | 5x=3×+6×+28 | | 2x+3x=8+3x | | X2-44x+650=0 | | X^2+y^2=3200 | | 12d-7d+2d-2d=20 | | 2y+2y+3y=14 | | a÷5+2=15 | | 16z-7z+3z+3z-14z=18 | | 3n−3n+5n=15 | | 4q+2q+2q+3q-2q=18 | | 4u-2u+2u-3u=1 | | 6a+3a-4a=15 | | 12q-11q=15 | | 10k-k-3k+3k=9 | | 2t-t=5 | | 3n-2n=12 |